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Abstract. The purpose of this paper is to present a comparative study of the use
of three different Minkowski’s metrics in the k-NN (k Nearest Neighbor
algorithm) classifier's design and operation: metric 1, euclidean and infinite. In
a certain way, this paper is an experimental confirmation of the theoretical
concepts suggested in [5], aiming at finding an optimal metric for the design
and operation of the k-NN classifier. In this paper the k-NN algorithm is
applied to one of the databases that has been most used in testing pattern
recognition and machine learning algorithms, the Iris Plant Database. Our
experiments confirm the hypothesis presented by the authors of [5], in the sense
that euclidean metric tends to be the optimal metric for the k-NN algorithm.

1 Introduction

The k-NN algorithm (k Nearest Neighbor) is one of the longest-lived algorithms in
the area of pattern classification, its simplicity making it attractive to researchers
dedicated to pattern recognition and machine learning. As Cover and Hart [1]
mention, the first formulation of a nearest neighbor rule was presented by Fix and
Hodges in the early fifties. The nearest neighbor rule requires a set of labeled patterns,
also known as fundamental set, where the class to which each pattern belongs is
specified. This fundamental set is used to classify a set of test patterns, accounting for
the distances from a test pattern of unknown class to each and every pattern in the
fundamental set; assigning to the test pattern the class of the nearest pattern,
according to a metric or function of distance previously chosen [9-1 1

In the k-NN method the distance from a test pattern to each element of the
fundamental set is calculated, the distances are sorted from lesser to greater and the
majority rule is applied to the classes of those nearest k patterns, being k an arbitrary
integer constant. This process is expensive in computational terms, for a relatively
large fundamental set [2].

The importance of the metric or function of distance used in designing a k-NN
classifier system is such that many researchers have approached the problem of
finding the metric which yields the best results; that s, a statistically optimal metric

[3-8].
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Short and Fukunaga [3] show a local distance measure to optimize the performance
of the 2-NN classifier for a finite number of samples, and point that the close
relationship between NN classification and density estimation suggests that an
analogous performance improvement in classification error may also be obtained by a
proper choice of a distance measure.

In a specific application area, character recognition, Waard [4] proposes a simple
selective learning method using an optimised distance, and he discusses a fast search
method. In another related work, Imiya [6] defines a distance measure among spatial
lines, and by using the geodesic distance and the proposed metric, he constructs a
method for the classification of spatial lines. In more recent works, Jin and
Kurniawati [7) try using different metrics in searches related to visual information
retrieval, and Peng er. al. [8] propose an adaptive nearest neighbor classification
method which allows minimizing the bias caused by the variability of class
conditional probabilities when high dimention patterns are used.

The current paper is inspired by the theoretical concepts suggested by Snapp y
Venkatesh [5], who analyze the Minkowski's metrics in the k-NN classifier's design
and operation, pointing out that the optimal metric approaches the euclidean as the
size of the fundamental set grows. This work is, in a certain way, an experimental
confirmation of the theoretical results of Snapp and Venkatesh, by applying the k-NN
algorithms to a very popular database.

The rest of the paper is organized as follows: in section 2 Minkowski's norms and
metrics are introduced, since they are the basis for the algorithms designed during the
experimental study. Section 3 is dedicated to presenting the k-NN algorithm, both for
when k = 1 as for when k is a positive integer number greater than 1; it also includes
an illustrative example. Section 4 contains the proposed methodology which allows to
perform the comparative study, while section 5 is the essential part of the paper,
showing the experimental results. The conclusions are presented in section 6, along
with suggestions for future work, finalizing with acknowledgements and references.

2 Minkowski's Norms and Metrics

This section is dedicated to presenting Minkowski's norms and metrics, since they are
used in the algorithms designed during the experimental study. The concepts and
definitions presented in this section were taken from [10] and [11]. First the concept
of norm is defined, so as to then derive the definition of Minkowski's norms and later
do something similar with the concept of metric and the definition of Minkowski's
metrics

2.1 Norms

A nomm on R" is a function N:R" — R which complies with the following
propierties:

N(x)20, VxeR" (1)
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N(ex)=|o{N(x), xe€ R",aeR )
N(x)=0 ifandonlyif x=0, xe€ R" 3
N(x+y)S N(x)+N (») Vx,ye R" (Triangle inequality) @)

2.1.1 Minkowski's Norms
Let x€ R", the Minkowski's norm of order p with p€ Z* is defined as:

(%) ©)
"x l:le ] donde x= x:z
i=] .
\*n /
There are three particular cases of Minkowski's norm:
Norm 1: p=1
n (6)
"xlll = lelel =
=
Euclidean Norm: p =2
(™)
R P R e e
Infinite Norm: p — oo
n ) (8)
. = x| = méxtbeb b}
i

2.2 Metric

Even though we have the intuitive notion that a metric is a way of measuring a
distance, its formal definition is as follows:
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A metric on R" is a function p:R"xR" — R which satisfies the following
propierties:

p(x,y)=0 ifandonlyif x=y, Vx,ye R" 9)
p(x,y)=p(y,x), Vx,yeR" (10)
p(x,y) < p(x,2)+p(2,y), Vx,y,ze R” (11)

Generally speaking, there is an infinite number of functions that fulfill the former
definition, and therefore the distance between two points calculated by a metric can
be completely different to the distance calculated by another metric.

2.2.1 Minkowski's Metrics

Minkowski's metrics are induced by Minkowski's norms:
(12)
=, [ZIx, vl ] x,yeR", p,neZ’

i=l

The metric will behave according to p. There are three values that are most
commonly used:

Metric 1: p=1
n . (13)
_y"l =Z|x‘-y’| X, Y€ R
il
Euclidean Metric: p=2
I (14)
kosh=| Skl [ xver
i=]
Infinite Metric: p — oo
(15)

k=i =vlx-» =xyek”

i=l
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3 The k-NN Classifier

In this section the k-NN algorithm is presented, both for when k = 1 as for when k
is a positive integer number greater than 1; it also includes an illustrative example.
The contents of this section is fundamentally based on [1], [2] and [11].

3.1 The 1-NN Classifier Algorithm

Given the following finite fundamental set of p pairs of patterns, with p being a
positive integer, being x* a n-dimensional real pattern and y* the assigned class to
this pattern:

{(x”,y”),,u =1a2:3""7p}

the algorithms to design and operate a k-NN classifier are described next:

3.2 Algorithm Fork=1:

1 Select the metric.

2 Let x be a pattemn to classify. Calculate the distances to each and every
pattern in the fundamental set.

3 Obtain the minimal distance.

4 Assign to x the class of the pattern with the minimal distance.

3.3 Algorithm Fork>1:

1 Select the metric.

2 Let x be a pattern to classify. Calculate the distances to each and every
pattern in the fundamental set.

3 Sort the data in ascending order.

4 Obtain the k lesser values of distance.

5 Use the majority rule to assign the class.

A significant fact to mention is the metric to be used in the algorithm. Obviously

the result of the distances will depend on the metric used, being the Minkowski's
metrics the most widely used 5].

3.4 Example
Let {(x' N, (6%, 1), (3, )} be the fundamental set.

1 2
Where: x' = [I}yl =w,, xz = (1],)/2 =w,, XJ

0 3
5 ay =w3
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And let: 4 = (2) be a pattern to classify.

1.- For this example, we select the euclidean metric.
2.- Using equation 14 (euclidean metric), we calculate the distances to each
element of the fundamental set.

o[ T

L i=1

1

e 1

dz=Lfo—x,‘z ‘=fe-2t+(-27 =Y
i=] _
-y N

dy=| 3] %[ z=%/(o—2)2+(5—2)‘={lﬁ
[ i=1 3

3.-Since d, <d, y d, <d,, d, isthe minimal distance.
4 - Since d2 was obtained from the element x° and it belongs to the class &, ,

we may conclude that x! belongs to the class &, .

4 Proposed Methodology

Given that our purpose is to test the k-NN classifier's algorithm with Minkowski's
metrics for different values of p, over trustworthy and proven data, we have decided
to chose the [ris Plant Database, available at the UCI Machine Learning Repository
site [13]. This is one of the most popular and trustworthy databases, and has been
used to test an important number of pattern classifying algorithms. It was ellaborated
by E. Anderson and initially presented by Fisher [12] in 1936. The Iris Plant Database
has 150 data patterns extracted from three classes of flowers: Iris setosa, Iris virginica
and Iris versicolor, having each class 50 representative patterns, and each pattern
having four features: sepal lenght, sepal, width, petal leght, and petal width. In Table 1
is shown an example of each class, as contained in the database. This database con be
consulted in its complete state in [12] or be downloaded from [13].

Table 1. Examples from the Iris Plant Database

sepal length sepal width petal length petal width class

5.1 3.5 1.4 0.2 Iris setosa

;I..O 3..2 47 1.4 Iris versicolor
;5.3 33 60 2.5 Iris virginica
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In order to test the k-NN algorithm we generated a computer program that reads
the UCI's Iris Plant Database [12], forming a fundamental set with 90 of its patterns
and classifying the rest with respect to such fundamental set.

The program's algorithm is the following:
Read the Iris Plant Database
Fori=1 until 100

1
2
3 Do
4

Take 30 random elements from each class (Iris setosa, Iris versicolor
and Iris virginica).

5 Execute the k-NN algorithm with k = 1 and the 1 metric.

6 Execute the k-NN algorithm with k = | and the euclidean metric.

7 Execute the k-NN algorithm with k = 1 and the infinite metric.

8 End Do

9 End For

10 Show how many patterns were correctly and incorreclty classified in a table

The analysis of the results will show which of the Minkowski's metrics yields the
best results and, therefore, approaches Snapp and Venkatesh's hypothesis presented in

[5].

S5 Experimental Results

In Table II are shown the results obtained when executing the program. As can be
seen, the results given by metric 1 and the euclidean metric are quite alike, except in
some cases in which the euclidean metric performs better classifications.

Table 1. Results Table

teration Metric 1 Euclidean Metric Infinite Metric
Correct Incorrect Correct Incorrect Correct Incorrect
1 57 03 57 03 33 27
2 57 03 57 03 41 19
3 57 03 58 02 38 22
4 59 01 59 01 36 24
5 57 03 57 03 38 22
6 57 03 57 03 45 15
7 57 03 57 03 43 17
8 58 02 58 02 31 29
9 57 03 57 03 47 13
10 56 04 56 04 35 25
11 57 03 57 03 37 23
12 58 02 58 02 39 21
13 57 03 57 03 38 22
14 57 03 57 03 40 20
15 57 03 57 03 45 15
16 58 02 59 01 41 19
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iteration Metric 1 Euclidean Metric Infinite Metric
Correct Incorrect Correct incorrect Correct Incorrect
17 57 03 58 02 47 13
18 58 02 58 02 40 20
19 56 04 56 04 42 18
20 58 02 58 02 38 22
21 59 01 59 01 41 19
22 59 01 59 01 43 17
23 57 03 56 04 41 19
24 59 01 59 01 38 22
25 59 01 59 01 38 22
26 58 02 59 01 40 20
27 57 03 57 03 46 14
28 55 05 56 04 44 16
29 56 04 56 04 39 21
30 56 04 56 04 43 17
31 56 04 58 02 41 19
32 57 03 58 02 38 22
33 58 02 58 02 42 18
34 55 05 56 04 46 14
35 58 02 57 03 41 19
36 57 03 57 03 39 21
37 58 02 58 02 36 24
38 57 03 58 02 38 22
39 56 04 57 03 44 16
40 57 03 57 03 44 16
41 55 05 55 05 40 20
42 56 04 58 02 37 23
43 58 02 58 02 45 15
44 58 02 58 02 42 18
45 58 02 59 01 44 16
46 59 01 59 01 40 20
47 55 05 55 05 39 21
48 55 05 58 02 40 20
49 58 02 58 02 44 16
50 58 02 58 02 43 17
51 55 05 56 04 40 20
52 57 03 57 03 41 19
53 56 04 57 03 40 20
54 57 03 58 02 38 22
55 58 02 58 02 44 16
56 53 07 54 06 40 20
57 57 03 57 03 37 23
58 58 02 58 02 36 24
59 57 03 57 03 41 19
60 55 05 56 04 44 16
61 57 03 57 03 32 28
62 57 03 58 02 32 28
63 58 02 59 01 49 11
64 56 04 56 04 43 17
65 58 02 58 02 40 20
66 56 04 58 02 45 15
67 57 03 58 02 41 19
68 54 06 55 05 47 13
69 59 01 59 01 43 17
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Iteration Metric 1 Euclidean Metric ' Infinite Metric
Correct Incorrect Correct Incorrect Correct Incorrect
70 56 04 56 04 35 25
71 58 02 58 02 40 20
72 57 03 57 03 42 18
73 57 03 57 03 38 22
74 56 04 56 04 44 16
75 57 03 57 03 38 22
76 58 02 58 02 46 14
77 55 05 55 05 46 14
78 59 01 59 01 36 24
79 57 03 56 04 38 22
80 58 02 58 02 45 15
81 55 05 55 05 36 24
82 59 01 59 01 48 12
83 56 04 56 04 40 20
84 57 03 57 03 38 22
85 57 03 58 02 43 17
86 56 04 56 04 45 15
87 56 04 57 03 40 20
88 56 04 57 03 31 29
89 58 02 58 02 42 18
90 59 01 59 01 35 25
91 57 03 58 02 46 14
92 58 02 58 02 456 14
93 57 03 57 03 47 13
94 59 01 59 01 35 25
95 56 04 56 04 37 23
96 57 03 57 03 33 27
97 57 03 57 03 48 12
98 57 03 57 03 39 21
99 58 02 58 02 44 16
100 Y4 03 59 01 44 16

If we look closely at iteration 3 (in Table II), we can see there is a difference
between metric | and the euclidean metric. This difference is due to the fundamental
set containing the following elements:

Where: ,/

{91 (o 9 e (6, 3200

4.9 (53)
1.5] | ;|19

- x’ = y' =0, ,
63 y =0, Y 6.4 y 3
2.5 \2.7)
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(5.6)

1.4

when classifying the pattern x? = 6.1 that belongs to the class &, we have

\2.6)

two cases of relevance:

a)  Using metric 1 (equation [13]):

n
1 i i a i a __ I
by =), = S s e ] - -]t
k=1
Y e Y] _ - -
dz"ﬂ" — % H.— P —xi|= xl|+|x2 l x; x4|
I=

d, =|5.6-4.9+[1.4-1.5+|6.1-63 +[2.6-2.5=0.7+0.1+0.2+ 0.1 = 1.1
d, =|5.6-5.3+|1.4-1.9+|6.1-6.4| +[2.6 -2.7=0.3+0.5+0.3+0.1=1.2

Since d, < d,, the pattem x” belongs to the class &, which is an error, given
that it belongs to the class &, .

b)  Using the euclidean metric (equation [14]):

1

< 2 2 (]2 (|2 a 2 a i]?

a_‘xl“ =[ X:—xil ={jx —x 2 =%;| Hxy —X[ +ixg =X,

2
k=]

2

2

a ’
%4 _xkl ]

d, =

dz =“xu —x’“z =[ 3
=]

d, = §[|5.<5-4.9|2 +1.4-19 +|6.1—6.3|2 +[2.6-2.5]" =%/0.49+0.01+0.04+0.01
=3/0.55

s el +fes —xl[

d, ={|5.6- 5.3 +[1.4-1.9 +[5.1-6.4] +[2.6 -2 =¥0.09+025+0.09+0.01
d, =3/0.44

Since d, < d,, the pattern x“ belongs to the class @' which, as is known, is the
correct class.
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6 Conclusions and Future Work

By using Minkowski's metrics (the three particular chosen cases) in the k-NN
classifier, we can see that even though the results shown by metric 1 are very similar
to those given by the euclidean metric, the latter is more exact. We can also see that
the error caused by the infinite metric is much greater than that caused by metric 1 or
the euclidean metric. Therefore, we conclude that the best metric to use in a k-NN
classifier applied to the Anderson's Iris Plant Database is the euclidean metric, and
this conclusion agrees to the hypothesis proposed by Snapp and Venkatesh in [5]. As
future work we suggest applying the methodology herein proposed to do a broader
study on a diverse set of databases, from different fields of application, and show
statistical results in order to corroborate (or reject) the theoretical hypothesis
suggested in [5].
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